Gravitational waves-- a new window on the universe

LIGO--Laser Interferometer Gravitational Wave Observatory

LBNL Nuclear Sciences
Division Colloquium
December 7, 2011

Jay Marx LIGO Laboratory Caltech

Topics

- About gravitational waves
 - Characteristics of GWs
 - Astrophysical sources of GWs
- LIGO-- observatory for GWs from astronomical sources
 - What is LIGO and how does it work
 - Status of LIGO and recent scientific results
 - Evolution of LIGO over the next decade
- Gravitational wave astronomy— a new window on the universe

Gravitational waves

- GR- The fabric of space-time is dynamic
 - » Mass causes fabric to warp and in some circumstances to ripple

 GWs are the ripples in the fabric of space-time that propagate at light speed

Gravitational waves

 Because GR is a tensor theory GWs are transverse, quadrupole waves with 2 polarizations.

• Gravitational waves stretch/squeeze space and everything in it transverse to direction of propagation. The key to detecting them.

• GW's are emitted by accelerating aspherical mass distributions

A GW traveling into the screen

GWs carry very different information about source than EM radiation

• EM radiation emitted by moving electric charges

- » Emitted in small regions with short wavelength
- » Carries information about small portion of astronomical source (that's why can image source with EM)
- » Can be absorbed/distorted in transit by intervening matter

GWs are emitted due to motion of overall mass of entire system

- » For astronomical systems GWs have long wavelengths comparable to size of system
- » Convey information about the motion of large-scale mass distributions- gives a "picture" of the dynamics of an astronomical system
- » Because gravity is weak, GWs travel ~unimpeded from source core

GWs--ripples in space-time from some of natures most violent events

GWs from NS-NS inspiral & merger

Strength of Gravitational Waves e.g. from merging neutron stars

~ 50 million light years away

● Gravitational wave strain (strain h= △L/L)

"h" is relative stretch/squeeze of fabric of space over a distance L due to a passing gravitational wave

Einstein--
$$h_{\mu\nu} = \frac{2G}{c^4 r} \ddot{I}_{\mu\nu} \Rightarrow h \sim 10^{-21}$$

If the distance to the nearest stars is stretched by a factor of 10⁻²¹ this corresponds to width of a human hair

The tiny size of the effect of a GW sets the challenge for LIGO

Gravitational waves can be seen with an instrument sensitive to changes in length

Detecting GWs with Precision Interferometry

- Suspended mirrors in L-shaped configuration act as markers of points in the fabric of space/time
- A passing gravitational wave alternately stretches (compresses) space-time thus changing the relative separation of the mirrors in each arm
- Optical interferometery is used to measure relative separation between mirrors in each arm

The wavelength of light (~1 millionth of a meter) is the yardstick to measure mirror separation

The experimental challenge for LIGO

Remember h = 10^{-21} ? $h = \Delta L/L$

The strain from a GW from a neutron star pair merging 50 million light years away

For *LIGO* the length of the arms of the interferometer is L= 4 km

So if $h=10^{-21}$, with arm length of L=4 km the effect of the GW is to change the distance between mirrors by:

 $\triangle L \sim 4 \times 10^{-18} \text{ meters!!!}$

What makes building a GW detector so hard?

The challenge: measure the relative distance of mirrors in 4 km interferometers arms to accuracy ~10⁻¹⁸ m;

 $\sim 1/1000$ the size of a proton!!!!

■ So must understand and control anything that can jiggle the mirrors, noise and other effects that could mimic gravitational waves at the 10⁻¹⁸ m scale in kilometer-scale instruments

Is it even possible to reach the needed sensitivity?

Intrinsic resolution of interferometers- how accurately can a fringe be split?

It's counting statistics-- sqrt of number of photons during measurement

- 10²¹ photons/second at beam splitter where interference occurs
- Measurement time ~10-2 seconds (at 100 Hz)
- Effective arm length = 4 km * average number passes for each photon(Fabry-Parot arm cavities--- $b \sim 50$)

$$h = \frac{x}{L} \sim \frac{\lambda}{Lb \sqrt{N\tau}}$$
 $h = 6x10^{-22} at 100 Hz$

Major noise sources must be under control

- Displacement Noise
 - » Seismic motion (limit at low frequencies)
 - Ground motion from natural and anthropogenic sources
 - » Thermal Noise (limit at mid-frequencies)
 - vibrations due to finite temperature
 - » Radiation Pressure
- Sensing Noise (limit at high frequency)
 - » Photon Shot Noise
 - quantum fluctuations in the number of photons detected
- Facilities limits
 - » Residual Gas (scattering)
- Inherent limit on ground
 - » Gravity gradient noise
 - Technical noise-
 - » laser, control, electronics, etc

LIGOLaser Interferometer Gravitational-wave Observatory

Hanford Washington

Livingston Louisiana

Some initial LIGO hardware

Mirror and control actuators

How to we avoid being fooled?

Monitor everything that can fake a GW signal

- » Ground motion (with seismometers)
- » Line voltage
- » Acoustic noise (mircophones)
- » Magnetic fields
- » Etc.

• Require at least 2 independent signals

- » e.g. 2 inteferometers, 2000 miles apart
- » Interferometer + external trigger (e.g. optical supernova)
- Many other checks of reality of a signal—
 e.g blind signal injections

2000-2005: The challenge of taming the interferometers

Meeting the experimental challenge

- In 2005 after 5 years of intense effort the predicted sensitivity was reached--LIGO could measure 10⁻¹⁸m
- LIGO was ready to begin the serious search for GWs

LIGO's evolution after reaching design sensitivity

Initial phase- search for gravitational waves

- » November 2005 to October 2007
 - –Successful 2 year long science run at design sensitivity
 - -Hundreds of galaxies in range of LIGO
 - -Would see merging neutron star binaries as far as 100 million light-years from earth

Data analyzed, science results published

Data analysis

Data analysis from 3 interferometers by the LIGO/Virgo (Italian/French instrument near PISA) collaboration is organized into four types of search analyses:

- Binary coalescences ("inspiraling" NS-NS, BH-BH or NS-BH pairs)
 - Signal shape matched to well modeled chirped waveforms
- 2. Transients sources with unmodeled waveforms ("bursts")
 - High S/N in coincidence with external trigger or between LIGO sites
- 3. Continuous wave sources ("GW pulsars")-
 - GW signal phased to known pulsar ephemeris after Doppler correction
- 4. Stochastic gravitational wave background (cosmological & astrophysical foregrounds)
 - Stochastic signal correlated between multiple interferometers

Sample of science results from LIGO

- No GW observed yet --- not unexpected -- odds ~few % with initial LIGO sensitivity
- Data set scientifically meaningful upper limits on numbers or strength of cosmic sources
- e.g. Binary neutron stars or black holes coalescing
 - » In Milky Way sized galaxy
 - NS-NS merger happens less often than about once every 50 years
 - for 5.0 M_o BH-BH merger happens less often than about once every 250 years

Some science results from LIGO

- Pulsars
 - » Looked for GW signal from ~100 known pulsars
 - -Only get GW emission if source is aspherical
 - Results--pulsars are very spherical
 - Limits on pulsar ellipticity < 10⁻⁶
 - » means if bump on 10 km (city sized) pulsar it is <1 cm</p>

Crab pulsar spindown limit

- Remnant of supernova explosion
 - » In our galaxy, ~6500 light years distant
 - » Neutron star spinning at ~30 Hz
- Slows down by ~38 ns (billionth of second) per day due to emission of energy
- How much of energy loss is into gravitational waves?
- Result from LIGO data--
 - » ~5% of energy loss in spindown goes into GWs

Search GW signal from big bang

- Only possible way to "see" all the way back to the big bang
- Big bang should have produced GWs that fill all of space

• Results published -- GWs from the big bang make up less than 1/100,000 of the energy density in the universe

LIGO's evolution after reaching design sensitivity

» Enhanced LIGO

- -July 2009 October 2010 (S6 science run)
 - Key technical step towards Advanced LIGO- new readout, higher laser power, real Advanced LIGO hardware field tested.
 - Somewhat improved sensitivity over previous run

Next phase-- gravitational wave astronomy

Advanced LIGO---

- » Project to improve sensitivity by 10
 - Sensitive to sources 10x further away
 - Number of extragalactic sources in range increased by (10)³=1000

- » Expect to observe GWs at few/week to few/month rate 1 day of observing with Advanced LIGO equivalent to more than 1 year of initial LIGO
- » Began project in April 2008; funded by NSF (\$205M); UK, Germany, Australia
 - About 65% complete; construction finished in 2014
 - 3 new instruments- 1 at Louisiana site, 2 at Hanford site

Advanced LIGOimprovements from current LIGO

- Keep initial LIGO "infrastructure" and sites
 - » Vacuum system (4 km arms), building, roads, etc.
- Improved technical components including---

• 20x higher power laser

Larger, better mirrors
 (to handle increased thermal load)

Better isolation of mirrors

How far will Advanced LIGO "see" all-sky average

• Merging neutron star binaries:

- * Initial LIGO: ~50 million light years
- * Advanced LIGO: ~500 million light years

hundred's of thousand of galaxies in range

Merging black hole binaries:

- * Initial LIGO: Up to 10 M_o , at ~300 million light years
- * Advanced LIGO: Up to 50 M_o in most of the universe

When will gravitational waves be discovered??

- Expect by 2016 when with Advanced LIGO we can "observe" 1000 more galaxies than with current LIGO.
- Expected signal rate ~1/week
- Then the era of gravitational wave astronomy will begin

Gravitational wave astronomy ---a new window on the Universe---

GW astronomy needs a global partnership between GW instruments around the globe and other telescopes

- Will need an earth-spanning instrument to pinpoint direction of GW sources over the whole sky
- Will permit optical, x-ray, radio telescopes to do follow-up observations of sources of GWs

"We see a GW; point your telescope there; what do you see?"

Towards a global GW "telescope"

• Why?

- » Source location on sky by time-of-arrival triangulation between instruments separated by continental distances
- Goal- global tetrahedron so can triangulate in all directions
- Now-- LIGO, GEO-Germany, Virgo-Italy

 - » Observing together as single array, all in east-west plane
- The future global array--
 - » US- Adv. LIGO; Europe- Adv. Virgo
 - » Japan- LCGT; India ???— important southern node

- Sky location
- Source polarization
- Waveform extraction
- Follow-up EM observations

Global network of interferometers in 2009

LIGO, Virgo and GEO carry out all observing and data analysis as one team since

The future for ground-based GW interferometers--middle next decade and beyond

- Advanced LIGO will be operating in ~2015; hopefully with good sensitivity in 2016
- Advanced Virgo is bring built on the same time scale as Advanced LIGO, and will achieve comparable sensitivity.
- The Japanese GW community is building LCGT, a 3 km cryogenic interferometer in the Kamioka mine.
- The Indian GW community is seeking funding for a third Advanced LIGO site in India

Advanced VIRGO

- Upgrade of Virgo near Pisa Italy
- Advanced Virgo- 3 km arms
 - » Aims for ~same sensitivity as Advanced LIGO (somewhat better at low frequencies)
 - » Funded by CNRS (France) and INFN (Italy)
 - » Planned to be online ~when Adv. LIGO online
- Status-
 - » Funded
 - » Construction ongoing, slightly behind schedule

Large Cryogenic Gravitational Wave Telescope (LCGT)

- Site--- Kamioka mine in Japan
- Funded in 2010
- Unique characteristics---
 - » Underground to reduce seismic noise
 - » Cryogenic (mirrors) to reduce thermal noise
- Being built in 2 phases
 - » Phase 1- non-cryogenic, conventional—like initial LIGO. Online in 2016
 - » Cryogenic with higher laser power online 2018

LCGT in Kamioka mine

Towards a Southern site for the the global network

1st try---LIGO-Australia

 Idea- Use components from one Advanced LIGO detector from Hanford to assemble a detector in infrastructure provided by Australia

» Idea took off; National Science Foundation approved

Challenge– securing funding (>\$200M) in Australia (Australian economy ~15% of US economy; like \$1.5B)

Science excited everyone but poor Australian economy, goal of balanced budget meant no funds

LIGO-India If not Australia, then India as the Southern site

- Indian GW community has been part of LIGO for years
- Indian interest in partnering in LIGO-Australia (~15%) lead to government awareness of exciting science/ technology of GW instrument
- When LIGO-Australia ended, Indian interest shifted to possibility of full LIGO site there
- Like LIGO Australia, would use an Advanced LIGO interferometer in infrastructure constructed by India
- LIGO-India on short list of inclusion in government's next
 5 year plan— while know about funding in next few months
- If it happens, LIGO-India will operate as a third LIGO site as was planned for Australia

Scientific Benefit of LIGO-India

Determination of source sky position: NS-NS binary inspirals

The Advanced GW Detector Network

Similar Result for Burst Sources

Advanced Detectors: Cumulative fraction of the sky as a function of the 90% error region

Example science from global GW telescope

- Multi-messenger astronomy

 correlate signals seen in

 GW with observations in EM (optical, radio, x-ray,

 gamma), neutrinos to characterize sources of GWs; e.g.
 - » Are short gamma ray bursts NS-NS mergers?
 - Use merging NS-NS as standard sirens for dark energy measurement—
 - NS-NS GW emission strength well calculated
 - Observed GW strength + polarization (orientation of binary) gives distance
 - Optical observation gives redshift of host galaxy
- In merger phase of neutron state pairs, shape of GW signal is related to nuclear equation of state

Well before the end of this decade we hope to have a world-spanning GW telescope

- Advanced LIGO and Advanced Virgo should be on the air in 2015
- LIGO-India and LCGT could be online in 2020
- Giving our 1st view of the gravitational wave sky
- We expect to learn about some of the must energetic events in the universe (e.g. colliding black holes) and discover new objects and phenomena "out there"

LIGO poised to give a new view of the heavens, New and deeper insights into nature

Backup slides

A detector in Australia comparable to LIGO and Virgo would significantly improve network's angular sensitivity

Important for multi-messenger observations using optical, x-ray, radio, gamma ray, neutrino instruments

LIGO and Virgo only

LIGO, VIRGO and AIGO (Australia)

Some cosmic sources of GWs

Pulsars---spinning neutron stars

 Merging neutron star and black hole binaries in distant galaxies

- Huge explosions --examples
 - Supernovae--collapsing core of massive stars
 - Gamma ray bursts
- The big bang, cosmic strings and other phenomena from the early universe
- The Unexpectednew instruments see new phenomena!

LISA-- complementing LIGO

Major Caltech and JPL involvement

- A GW instrument in space-- 5 million km arms!!!!
- Measure GWs at much lower frequencies than LIGO
 --can only do off the earth

- Will see different kinds of astronomical objects
 - » e.g. merging super-massive black holes from galactic mergers

LISA- launch 2018 by NASA/ESA

"Indirect" evidence for gravitational waves

Joseph H.Taylor Jr

Russel A. Hulse

Discovered and Studied Pulsar System PSR 1913 + 16 with Radio Telescope

Won 1993 Nobel Prize

LIGO's current Astrophysics Collaborations

Neutrino detectors

- » IceCube and ANTARES MOUs are signed
- » LV-Super-K MOU on hold

Wide-field optical follow-ups

- » All have been approved as part of LOOC-UP
- » TAROT, QUEST, ROTSE signed
- » Pi of the Sky, Skymapper, Palomar Transient Factory in process

NASA satellite missions

- » RXTE, Swift, Fermi LAT and GBM working through the signature process
- » Long standing existing MOU with RXTE for Sco-X1 work

Radio telescopes

- » Long standing existing MOU with Jodrell Bank
- » LOFAR working through the signature process
- » Arecibo, EVLA MOUs under consideration

Numerical relativity

- » NINJA2 MOU under development
- A total of 19 MOUs in force, approved, or pending approval

Major new involvement with PTF (Corsi)

A global network of interferometers doing coherent observation-- next decade and beyond

What determines LIGO's Sensitivity?

- Ground motion (Seismic noise) limits low frequencies
 - Pendulum suspensions
- Finite temperature of equipment (thermal noise) limits middle frequencies
 - >> High Q optics
- Quantum nature of light (Shot Noise fluctuations) limits high frequencies
 - High laser power but more thermal effects
- It has taken years to successfully understand and tame these and other effects

LIGO seismic isolation concept

